Building-Integrated photovoltaic technologies and systems for large-scale market deployment

BIPV Demo sites

A varied range of innovative BIPV products will be installed on six real buildings in five different European locations and climate conditions. Technology Readiness Level 7 (TRL7) will be demonstrated, meaning that the BIPV products in development should perform appropriately in their intended operational environments.

An overview of the demonstration sites and the products which will be installed is provided in the following tables. More details for each demonstration site are available below, along with a description of experimental sites where further testing of BIPV products will take place for the PVSITES project.

Table for website v4.png


 

Single House

The single house was built in 2015-2016 in accordance with passive and bioclimatic standards. It is already inhabited by the owner and monitored for various studies in terms of electric consumption, room temperature and relative humidity.

FormatD2_1b.png

 The south-facing single-slope roof was designed at an early stage for optimal solar exposure. Standard tiles have been mounted as a temporary roofing material before BIPV shingles replace them entirely during the course of the PVSITES project. The shingles will be made of steel with an integrated thin-film CIGS PV layer.

FormatD2_2.jpg

The electricity generated on the 107 m² of the roof will be directed to an energy management system featuring a battery bank. The system will optimize electricity storage and discharge so as to cover as much of the household consumption as possible. A connection to the grid will allow to import and export missing and surplus electricity as needed. Overall the installed BIPV system is expected to make the house an energy-plus building, meaning its net yearly energy production will exceed its consumption.


 

Warehouse

This industrial warehouse is owned by the Swiss Federal Laboratories for Materials Science and Technology (EMPA). It will be retrofitted with two different BIPV products: Glass-free thin film solar façade cladding with aluminum back plates, and lightweight flexible thin film solar roofing plates. This way electricity production will occur on both the façade and roof of the building.

Flisom_warehouse_1.jpg

Innovation will come from novel BIPV products based on flexible CIGS solar foils for achieving zero energy building standards. The demonstrated products will upgrade the building aesthetics, as well as enhance self-production of electricity.


 

Carport

The carport is located at the EMPA headquarters in Zürich. The roof cover is currently made of corrugated metal sheets. It will be refurbished with an assembly of flat metal tiles sporting CIGS thin-film PV, customized to accommodate the specific carport dimensions.

Flisom_carport_1.jpg


 

Industrial Building

The roof of Cricursa’s industrial facility in Catalonia will be retrofitted with 200 m² of thin-film CIGS shingles. The shingles will be integrated in the roof structure so as to ensure an harmonious visual appearance.

Cricursa_1.jpg

As a glazing manufacturer Cricursa is also interested in the results of the PVSITES project for the possible future introduction of glazed BIPV products on the market.


 

Apartment Building

A ventilated BIPV façade will be added as a retrofit to a typical multi-storey social housing building in northern France.

Vilogia_1.png

One of the main objectives for installing BIPV at this location is to significantly reduce the electricity bills for the building, which will be to the benefit of the tenants. The impact of the BIPV façade on the thermal performance of the building envelope will also be investigated. Quite importantly the visual aspect of the ventilated façade should be pleasant and play a role in improving local perception of the building. If successful on all these criteria the chosen approach could be applied by Vilogia in other retrofit projects in the future.


 

Office Building

Two symmetrical ventilated BIPV façades will be installed at the Tecnalia building in San Sebastián, in the Spanish Basque country. The four levels of the building mainly host offices but also laboratories and special machines used for research purposes in the basement.

Tecnalia_4.png

The ventilated façades will be made of glass-glass sheets with back-contact c-Si cells. They will be installed on existing windows on the second and third floors. Besides contributing to electricity production for the building, the added façades are expected to provide passive cooling by shading the windows and the office areas located behind them. These offices currently tend to overheat during the summer as the air conditioning system does not provide enough cooling effect.

Tecnalia_3.png

Tecnalia_5.png

The electricity produced by the BIPV installation will be used in combination with an experimental energy management system also developed by Tecnalia. The system will comprise batteries and an inverter supplying the building with regular AC electricity. The generated PV energy will be used to reduce and flatten the electricity consumption of the office building.


 

Experimental facilities

More innovative BIPV technologies will be tested at the following experimental sites. For these products Technology Readiness Level 6 (TRL6) should be reached by the end of the project, at which point the next step will be demonstration in real building applications.

 

NEST Experimental Building

NEST is a large modular research and innovation building owned and operated by EMPA and Eawag in Switzerland. It is a functional test site where innovative technologies, materials and systems can be validated under realistic use conditions.

NEST_1.jpg

BIPV prototypes manufactured by Flisom will be validated at NEST during the course of the project. Details will be communicated when available.


 

FACT Test Facility

FACT is a new testing facility at the INCAS test platform of the CEA INES (French National Institute for Solar Energy). The acronym “FACT” stands for “FACade Tool”. Operational since summer 2016, it provides a modular tool to evaluate the energy performance and impact of building envelopes on indoor environment quality. FACT allows to test with maximum flexibility:

  • Opaque and transparent façades
  • Building envelope integrated HVAC systems, PV and BIPV systems
  • Lightweight and massive façades

CEA-FACT_1.png

The tests to be conducted for PVSITES will demonstrate the technical feasibility and validate the performance of several BIPV solutions:

  • Curved glass with flexible CIGS
  • PV glass with back contact c-Si cells, hidden interconnections and glass treatments for improved aesthetics and passive properties
  • c-Si semitransparent low concentration solar control BIPV systems implemented in a skylight configuration

The products and solutions will be developed by Flisom, Onyx Solar and Tecnalia with the collaboration of other partners such as Film Optics.

The following parameters will be measured and optimized:

  • Electrical energy output (DC and AC)
  • Thermal behavior
  • Impact of the integrated products on their environment: visual and thermal comfort and quality of the indoor environment.

CEA-FACT_2.jpg

Testing of PVSITES products at the FACT facility is scheduled to start in 2017.


 

Testcell Test Facility

Testcell is one of the facilities operated by Acciona at the CESE3R test center. With an area of 6000m², CESE3R is dedicated to the applied validation of energy efficiency and renewable energy technologies in buildings and industry.

Testcell is comprised of a steel frame, around and within which various combinations of experimental floors, façades and roofs can be added. The main objective of this modular approach is to demonstrate active and passive technologies embedded in building components. The effects of these components can be monitored in terms of energy efficiency, ease of integration, visual appeal, construction time and costs.

Acciona-Testcell_1.png

A c-Si semitransparent low-concentration BIPV system developed by Tecnalia in collaboration with Onyx Solar and Film Optics will be implemented in a façade configuration, and operated in combination with an energy management system developed by Tecnalia.